New Neumerical Method to Calculate Time-Dependent Quantum Properties in Finite Temperature Based on the Heisenberg Equation of Motion

نویسنده

  • Shin-Ichiro Kondo
چکیده

For the purpose of computer calculation to evaluate time-dependent quantum properties in finite temperature, we propose new numerical method expressed in the forms of simultaneous differential equations. At first we derive the equation of motion in finite temperature, which is found to be same expression as Heisenberg equation of motion except for the c-number. Based on this equation, we construct numerical method to estimate time-dependent physical properties in finite temperature precisely without using analytical procedures such as Keldysh formalism. Since our approach is so simple and is based on the simultaneous differential equations including no terms related to self-energies, computer programming can be easily performed. It is possible to estimate exact time-dependent physical properties, providing that Hamiltonian of the system is taken to be a one-electron picture. Furthermore, we refer to the application to the many body problem and it is numerically possible to calculate physical properties using Hartree Fock approximation. Our numerical method can be applied to the case even when perturbative Hamiltonians are newly introduced or Hamiltonian shows complex time-dependent behavior. In this article, at first, we derive the equation of motion in finite temperature. Secondly, for the purpose of verification and of exhibiting the usefulness, we show the derivation of gap equation of superconductivity and of sum rule of electrical conductivity and the application to the many body problem. Finally we apply this method to these two cases: the first case is most simplified resonance charge transfer neutralization of an ion and the second is the same process but impurity potential is newly introduced as perturbative Hamiltonian. Through both cases, it is found that neutralization process is not so sensitive to temperature, however, impurity potential as small as 10 meV strongly influences the neutralization of ion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

QUANTUM TUNNELING IN MEDIUMS WITH LINEAR AND NONLINEAR DISSIPATION

We have applied the method of integration of the Heisenberg equation of motion proposed by Bender and Dunne, and M. Kamella and M. Razavy to the potential V(q) = v q - µ q with linear and nonlinear dissipation. We concentrate our calculations on the evolution of basis set of Weyl Ordered Operators and calculate the mean position , velocity , the commutation relation [q, p], and the energ...

متن کامل

Thermal Buckling Analysis of Functionally Graded Euler-Bernoulli Beams with Temperature-dependent Properties

Thermal buckling behavior of functionally graded Euler-Bernoulli beams in thermal conditions is investigated analytically. The beam with material and thermal properties dependent on the temperature and position is considered. Based on the transformed-section method, the functionally graded beam is considered as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity un...

متن کامل

Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory

In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013